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Agricultural intensification is considered the major cause of decline in farmland bird populations, especially in
the Mediterranean region. Food shortage increased by the interaction between agricultural intensification and
density-dependentmechanisms could influence the population dynamics of colonial birds.Weused demograph-
ic data on lesser kestrels (Falco naumanni), a key species ofMediterranean pseudo-steppes, to understand the im-
portance of land-use changes and density-dependent mechanisms in the light of its fluctuating conservation
status in the Western Palearctic. Our analysis indicated an important influence of land uses (artichokes, arable
and grassland fields) and colony size on kestrel survival rates. The strong habitat effect revealed the unsuitability
of intensive arable lands with respect to extensive grasslands for lesser kestrels. Notably, artichokes, a winter-
intensive crop, proved to be a high-quality habitat as they were associated with survival values equal to those
of grassland. This is likely due to prey availability and reveals that non-traditional crops may provide suitable
habitats for lesser kestrels. Information theory gave strong support to the negative influence of colony size on fe-
cundity, albeit a small one, for its positive effect on survival probability. The estimated population growth rate
was negative for all three habitats, indicating a decline over time and urging conservation actions in all of the
areas studied. This decline was much higher in colonies surrounded by arable fields. In sensitivity analyses, λ in-
dicated that adult survival was the parameterwith the greatest effect on population growth, followed by survival
offledglings and fecundity. Our study showed how the costs and benefits of group living interact with agricultur-
al intensification to drive species demography. In addition, we integrated significant information on one of the
largest lesser kestrel populations to fine tune the most effective conservation strategy to prevent the collapse
of the species in a relevant part of its range.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The polarization of agriculture, with the intensification of farming
practices in flat and coastal areas and the abandonment of less produc-
tive and marginal lands, is causing great landscape changes on a global
scale (Donald et al., 2001; Baldi et al., 2013; Pe'er et al., 2014). This po-
larization is promoting wildlife-unfriendly farming systems (Brambilla
et al., 2008), with a consequent loss of biodiversity in Europe, especially
in regard to farmland birds (Butler et al., 2010; Sokos et al., 2013; Berg
et al., 2015). Common Agricultural Policy (CAP) through the agri-
environmental schemes (AES) provides the major mechanisms to sup-
port conservation actions in agro-ecosystems and faces the challenges
of the expansion of the EU common market (Stoate et al., 2009; Sokos
et al., 2013). Even if the EU recognizes biodiversity as a priority and
modifies agricultural policies to stop and reverse the biodiversity loss
(European Commission, 2006), agricultural intensification is still an
aggio).
ongoing process. The reformed CAP for 2014-20 provided new environ-
mental prescriptions such as organic farming and protection of tradi-
tional rural landscape, which have been argued to be too weak to
benefit biodiversity (Pe'er et al., 2014).

Dramatic modifications occurred in Mediterranean pseudo-steppes,
a global biodiversity hotspot (Myers et al., 2000), such as the reduction
in fallow land and field margins, removal of semi-natural patches, in-
crease in irrigated lands, and abuse of biocides, all of which seem to con-
tribute to the decline of farmland birds and other wildlife (Sirami et al.,
2008; Gonzalez-Estebanez et al., 2011; Sokos et al., 2013; Chiatante
et al., 2014).

It has been suggested that avian species breeding in pseudo-steppes
and aggregating in breeding colonies would suffer the most from
the current intensification of farming practices (Lane et al., 2001;
Catry et al., 2012). The causal link between the decline of such avian
species and agricultural changes has been proposed to operate via
density-dependent mechanisms, where colony size plays a crucial role
(Rodrıguez et al., 2006). In many cases, spatial arrangement between
food and nest-site availability determines the number of breeders with-
in colonies, i.e. colony size (Rodrıguez et al., 2006). Moreover, food
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depletion due to intraspecific competition, a density-dependent mech-
anism, regulates colony size and, ultimately, the population growth
rate (Lewis et al., 2001; Forero et al., 2002). It is thus likely that agricul-
tural intensificationwould exacerbate density-dependent effects, so we
might expect large colonies, characterized by higher food demand and
increased levels of agonistic interactions (Serrano and Tella, 2007), to
be more vulnerable to food depletion when placed in fast changing
agro-ecosystems. In other words, the relationship between agricultural
changes and colony size may have serious implications, still poorly
known, for the understanding of population dynamics in colonial birds
living in a pseudo-steppe habitat.

Here, we investigate how different agricultural habitats and colony
sizes may drive the demography of the colonial lesser kestrel Falco
naumanni, breeding in a pseudo-steppe of southern Italy. The lesser
kestrel is an appropriatemodel for the study of species–habitat relation-
ships because of its role as biological indicator for the monitoring of
population dynamics of pseudo-steppe avian species (Bustamante,
1997). The demography of lesser kestrel populations was first investi-
gated in Spain (Hiraldo et al., 1996)with the aim of estimating the prob-
ability of species extinction and evaluating different management
actions. Monitoring lesser kestrel populations beyond the Iberian
peninsula might provide further indications for preserving steppe wild-
life and setting management strategies applicable not only on the local
but also on the regional scale within Europe (Kolb, 2000; Sarà, 2010).
The species has recently been downgraded from the ‘Vulnerable’
to the ‘Least Concern’ IUCN category (Iñigo and Barov, 2011) but popu-
lation trends are highly variable across its range, including local cases
of population decline (Iñigo and Barov, 2011). In reality, where man-
agement measures were applied, the lesser kestrel has improved its
conservation status (Catry et al., 2012), while in areas of the Palearctic
range (e.g. Italy), without effective conservation strategies, populations
are fluctuating (Sarà, 2010). To allow full conservation recovery across
the range, it would be necessary to identify, assess, and ultimately pre-
vent the factors affecting the lesser kestrel's fluctuating demography,
especially in rapidly human-altered environments and in the light of
the six-year reporting cycle under Article 12 of the Birds Directive
2009/147/EC and the 2020 review of the European lesser kestrel Action
Plan.

In this study, we aimed to i) quantify the effect of land uses on fecun-
dity and survival probability, and its potential interaction with colony
size; ii) identify which demographic component was more important
in determining the population growth rate; and iii) provide conserva-
tion guidelines to improve habitat suitability for one of the largest
Italian populations of lesser kestrels.

Lesser kestrels tend to forage close to the breeding colony (García
et al., 2006). As a consequence, we expect a direct influence of habitat
around the colonies on survival and fecundity. In particular, we expect
both parameters to be higher in territories characterized by extensive
agriculture with expected high food availability (García et al., 2006).
Previous works have found higher survival probability in large colonies
compared with medium or small ones and concluded that colony size
was the causative factor (see, for example, Serrano et al., 2005). Because
for a given colony size, per capita food availability would depend on the
total amount of resources, we also explored the simultaneous effect of
colony size, habitat type and their interaction, i.e. the relative effect of
colony size according to the habitat considered.

2. Methods

2.1. Study species and data collection

The lesser kestrel is a small raptor that lives in pseudo-steppes of the
Western Palearctic and spends the winter in West Africa (Iñigo and
Barov, 2011). It is a facultative colonial species that usually breeds in as-
sociation with jackdaws Corvus monedula and rock pigeons Columba
livia (Campobello et al., 2012, 2015). From spring to summer between
2004 and 2012 (with the exception of 2008), an average of 14 ± 4
(range 8–24; N = 28) colonies per year were visited in an area of
474 km2 corresponding to the Gela Plain in southern Sicily (Italy, 37°
07′ N, 14° 19′ E). The Gela Plain hosts one of the most important lesser
kestrel breeding populations in Italy, with colony sizes ranging from1 to
45 pairs (Sarà et al., 2012). Since the 1950s, the human population has
shifted from the villages to the main two cities in the area, and the
rural past of the Gela Plain is characterized by several farmhouses and
rural buildings, partially destroyed or abandoned, that currently host
84% of the lesser kestrel colonies occurring in the area (the remaining
16% nesting in cliffs; Sarà, 2010). We defined a breeding colony as a
man-made building with at least one pair of kestrels performing some
reproductive behavior at the site (i.e. a male delivering prey to a female,
copulation or inspection of nest chambers) (Di Maggio et al., 2013;
2014). Visits to the colonies were conducted periodically, at the time
of site occupation and egg-laying (April–May), incubation and hatching
(May–June), and fledging (June–July). During these visits, we captured
breeding adults in accessible nests, recorded reproductive parameters,
and ringed nestlings usingmetal and darvic rings with unique alphanu-
meric codes. We carefully inspected colony buildings looking for dead
birds, and checked their sex, age, and whenever possible, causes of
death. During the same periods, 2 to 4 experienced observers conducted
resighting sessions of one hour per colonywith 20 × 60 spotting scopes
to check lesser kestrels marked in previous years. Every year, the same
observers conducted two to three resighting sessions per month in
three roosts (one on a pine-tree, two on electric pylons) where most
of the population gathered at night. Birds at the roosts were neither
breeding juveniles of the past year nor breeding adults. Double records
of the same birds, in the roost and at the colony, proved that many
breeders spent the night outside of their colony. Adults were also ob-
served there after having failed to reproduce (M. Sarà, unpublished re-
sults). We recorded the sampling effort as the number of days spent in
the field per year, and used this covariate as a predictor of resighting
probability. Since our data encompass both physical recaptures and
resighting of individuals, we addressed them with the general term of
‘encounters’ (Serrano et al., 2005).
2.2. Habitat types

The Gela Plain, due to limited precipitation (350 mm/yr), is com-
posed of a mosaic of pseudo-steppes dominated by artichoke fields
(Cynara spp.), in rotation with wheat (Triticum spp.) and leguminous
cultivations (80.9%, Triolo et al., 2011). The rest of the area contains
pastures and xeric vegetation, predominantly graminaceous plants
and Mediterranean shrubs (Stipa capensis and Hyparrhenia hirta;
10.7%) and small artificial Eucalyptus and pine stands (3.7%; Sarà
et al., 2012). Previous landscape analysis revealed a strong decrease in
Mediterranean shrublands and grasslands from 1867 to 2000, replaced
by arable lands, vineyards and greenhouses (Russo et al., 2009). Histor-
ically, the cultivation of cotton was predominant in the area until the
latter half of the past century when it was gradually replaced by arti-
chokes in the 1960s–80s. Today, agricultural intensification is increas-
ingly changing the core area of the Gela Plain with irrigated crops
implanted after the artichoke harvest. Nonetheless, the Gela Plain in-
cludes a Special Protection Area (SPA, ITA050001) and a Site of Commu-
nity Importance (SCI, ITA050011) and constitutes an Important Bird
Area (IBA 166; Gariboldi et al., 2000). A Principal Component Analysis
(PCA) was used to summarize the essential land-use characteristics
within an area of radius 1 km around each colony (Bonal and Aparicio,
2008; online Appendix A1). Results indicated that the habitat surround-
ing the colonies was characterized by one of the three main habitat
types (arable, artichoke or grassland (Table A1 and Fig. A1) and thus
we assigned each colony to one of these habitats for survival and demo-
graphic modeling (Soliveres et al., 2011; Fig. A2). PCA was calculated
using STATISTICA 8.0 (www.statsoft.com).

http://www.statsoft.com
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2.3. Survival and recapture probabilities

Marked birds were encountered near (i.e. roosts) or within their
breeding colonies. We coded these observations in encounter histories
(Burnham et al., 1987), in which for each year after the marking a “1”
coded for an encounter event and a “0” indicated when a given bird
was not seen. We used capture–recapture models to estimate local
survival (φ) and recapture probabilities (p), from these histories
(Burnham et al., 1987). We sorted birds into six groups according to
age at marking (two groups, originally marked as fledglings and breed-
ing adults are hereafter referred to as juveniles and adults, ‘J’ and ‘A’
subscripts in model notation, respectively) and habitat at marking
(three levels were obtained from the PCA: arable, artichoke and grass-
land, noted ‘ARA’, ‘ART’ and ‘GRA’ in model notation, respectively). For
birds marked as juveniles, we also considered two age classes, 1 yr old
and N1 yr, noted ‘Age’ in model notation. A small quota (4.4% out of a
total N = 2103) of juveniles was observed later as breeders. Possible
change in habitat across individual lifespan could be accommodated
into amultisite/multistate framework (e.g. Tavecchia et al., 2002). How-
ever, our data was too sparse to apply this modeling framework;
therefore, the habitat at marking assigned to juvenile birds represented
their natal habitat. A total of 72.3% of birds marked as breeders was
faithful to its breeding habitat. The low breeding dispersal is congruent
with findings in other populations (cf. Serrano et al., 2001 in which
71.6% of breeding lesser kestrels were recruited into the same colony
or settled in colonieswithin their previous foraging habitats).Moreover,
no cases of adult emigration to neighboring populations were detected
during the study period, in spite of specific monitoring of the colonies
outside the Gela Plain. As most records come from birds remaining in
the same breeding colony or habitat, we considered their habitat
at marking only and we were confident that the relatively few known
dispersal cases ignored here would not bias our results. In addition to
the effect of age and habitat effects, we considered two continuous
covariates as predictors of survival and recapture probabilities, respec-
tively: i) colony size (‘Cs’ inmodel notation) used to assess the potential
density-dependent effects, and defined as the sum of the breeding pairs
occupying a colony in each year; and ii) resighting effort, expressed as
the decimal logarithm of the number of days of observation or capture
carried out each year at lesser kestrel colonies (‘Re’ in model notation),
and used to assess the sampling effort. The analysis began with a
goodness-of-fit test (GOF) of the general Cormack–Jolly–Seber model
(CJS) with software U-CARE 2.3 (Choquet et al., 2009). The CJS model
assumes all parameters to be time dependent, so we introduced a 9-
level factor corresponding to the years of study and implemented it
for birds marked as fledglings as well as for those marked as adults.
The GOF test includes components sensitive to different sources of
heterogeneity, such as age, presence of transient animals (Test 3SR)
or trap-heterogeneity (Test 2CT; Tavecchia et al., 2008). We then con-
sidered a candidate set of a priori defined multiple models, that we si-
multaneously compared using model information theory (IT, Grueber
et al., 2011). In particular, we used the Akaike Information Criterion
corrected for small sample size (AICc; Burnham and Anderson, 2002)
for ranking the models coming from the considered predictors of sur-
vival and recapture probabilities. The model with the lowest AICc
value was considered to provide the best fit between model deviance
and model complexity. Models differing by less than two AICc points
were considered to receive nearly identical support from the data
(Burnham and Anderson, 2002; Grueber et al., 2011). In addition to
AICc values, we estimated model deviances for each model and predic-
tor weights. The latter two estimated the relative importance of each
variable in the model set, and were obtained by summing the AIC
weights of all models in which a given variable appeared (Symonds
and Moussalli, 2011). To account for model selection uncertainty, we
calculated the weighted average and the standard errors of parameter
estimates by full-model averaging (Symonds and Moussalli, 2011).
Model selection, parameter estimate, model deviance, AICc value, and
AIC weight were calculated using the program MARK 7.1 (White and
Burnham, 1999).

Finally, only 10 of the 68 birds found dead (7.55 ± 4.69 per year,
Table A2) were marked, so we were not able to correct for the recovery
probability using capture–recapture-recovery methods (e.g. Tavecchia
et al., 2012). Therefore, we investigated the relative importance of
each cause of death conditional on the recovery event, i.e. using only
birds that had been recovered. This conditional approach assumes that
a dead bird is equally likely to be found regardless of the cause of death.

2.4. Fecundity

Breeding data were collected from 2004 to 2012 (except for 2008).
Fecundity, i.e. the number of fledglings per nest, wasmodeled as a func-
tion of habitat (3-level factor), time (9-level factor) and colony size
(covariate, ‘Cs’) using a Generalized Linear Mixed Model with a Poisson
distribution (GLMM,McCullagh and Searle, 2000). As in survivalmodel-
ing, we compared and selected models using the IT approach. GLMM
was used to control for potential non-independence of data represented
by fledglings and adults from the same nest and/or colony (Millar and
Anderson, 2004; Zuur et al., 2013). To select which effect to include in
the random part of the model, we evaluated nest and colony identities,
first taken alone and then together, in order to select the random effect
with the lowest AIC (Krackow and Tkadlec, 2001); the latter proved
to be colony identity. Once the random structure was set, we modeled
the fixed part as a function of year, colony size and habitat type (Zuur
et al., 2013). We conducted all fecundity analyses in R 3.0.2 (R
Development Core Team, 2011) with the R package lme4 (Bates et al.,
2013). Both fecundity (expressed as the N of fledglings) and survival
(0–1 probability) varied with colony size (see results). Therefore, they
were standardized to their range [variable value, v = (v − min v) /
(max v − min v)] to allow direct comparison on the same scale of the
colony size effect (Milligan and Cooper, 1988).

2.5. Population modeling

To estimate the expected population growth rate in each habitat,
we slightly modified the age-structured population model formerly re-
ported for the species by Hiraldo et al. (1996) and Rodríguez and
Bustamante (2003) by considering a post-breeding census. The general
formulation for the matrix projection model takes the following form:

Ntþ1 ¼ MNt

where M is the population projection matrix (Caswell, 2001, 2007) in-
corporating data on fecundity and survival probabilities of fledgling
and older birds in a given habitat (Table A3). Nt is the vector with abun-
dance of individuals in each class of the life-cycle ages at time t. Thema-
trix M contains the age- and habitat-dependent survival and fecundity
parameters as estimated from individual life-history and colony moni-
toring (Supplementary material, Table A3). We assumed a balanced
sex ratio at fledgling (Negro and Hiraldo, 1992) and included a param-
eter for the proportion of juveniles and adults that attempted to
breed, ‘C0’ and ‘C’, respectively. These two parameters were estimated
by raw data as in Hiraldo et al. (1996). For each habitat, we calculated
the asymptotic population growth rate (λ) as the maximum real eigen-
value ofM, the stable age distribution, and the sensitivity and elasticity
of λ to variations in demographic rates (Caswell, 2001). The stable age
distribution represented the numerical contribution in terms of individ-
uals of each age class to the stable age. The sensitivity of λ indicates
which demographic parameter has the largest impact on the growth
rate of our study population,whereas the elasticity ofλ estimates the ef-
fect of a proportional change in a key demographic parameter (i.e. vital
rate) on the population growth rate (Caswell, 2001). Matrix population
modelswere analyzed using the package popbio (Stubben andMilligan,
2007) for program R (R Development Core Team, 2011). All results



Fig. 1. Survival probability of juvenile lesser kestrels in the Gela Plain (N= 2103) in rela-
tion to natal habitat and year.
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obtained from survival, fecundity and populationmodeling are given as
mean ± standard error, unless otherwise indicated.

3. Results

3.1. Habitat and colony size-dependent survival

We analyzed the encounter histories of 2103 lesser kestrels marked
as fledglings (776 in colonies surrounded by arable fields, 548 by arti-
choke fields and 779 by grasslands) and 175 birds marked as adult
breeders (75 in arable, 52 in artichoke and 48 in grassland colonies).

The result of the GOF test was not significant (GOF χ2 = 41.50, df =
73, p=0.99), meaning that our datamet the general assumption of the
CJSmodel. Threemodels rankedwithin the two points of AICc andwere
equally considered to give the best support to lesser kestrel survival. The
first model showed a relatively high AICc weight (0.35) with respect to
the second (0.18) and third (0.14; Table 1). All of thesemodels included
a habitat effect in the survival probability of both juvenile and adult
birds. Lesser kestrels living or born in colonies surrounded by arable
habitat had a lower probability of survival than those in colonies
surrounded by artichoke and grassland habitats (Models 1–3, Table 1).
The latter two habitats had the same effect on the survival of both adults
and juveniles and were treated together in further analyses. Average
survival probability for adults was 0.30 ± 0.08 in arable colonies,
0.75 ± 0.07 in artichoke, and 0.66± 0.07 in grassland colonies. Similar-
ly, survival probability for juveniles was lower in arable (0.13 ± 0.05)
than in artichoke (0.23 ± 0.07) and grassland colonies (0.21 ± 0.07;
Fig. 1).

Model averaging yielded the highest predictor weight of habitat
(w = 0.99) on adult survival, followed by colony size (w = 0.11),
which had no effect on survival. In the case of juveniles, the models in
Table 1 included a time and age effect, together with habitat; survival
was predicted from the model averaged effects of the year of study
(w=0.99, Fig. 1), age (w=0.99) and habitat (w=0.93). Nevertheless,
information theory gave some support for a positive effect of colony size
on predicting juvenile survival (w=0.29, linear predictor: 0.012±0.14
frommodel 2, Fig. 2); this factorwas included only in the second ranked
model. The inclusion of recapture effort led to a reduction of AICc value
(Table 1), as the first model not including the recapture effort
[pJ(t) pA(t)] ranked in the 12th position with a zero AICc weight. The
logit-linear predictor for the recapture effort was 1.13 ± 0.38. Adults
had a nearly 3-fold higher average recapture probability (0.18 ± 0.04)
than juveniles (0.07 ± 0.02; Fig. A3). The most frequent cause of
death among the 68dead lesser kestrelswas poisoning (26.47%) follow-
ed by birds that were stuck under unstable roof tiles (19.12%; Table A2).

3.2. Fecundity

The model selection procedure retained year as a significant source
of variation in the number of fledglings, which passed from an average
of 3.5± 0.19 fledglings in 2004 to 1.4± 0.10 in 2012 (Fig. A4). Contrary
Table 1
Capture–recapturemodels estimating survival and recapture probabilities of juveniles (ϕJ and p
itats of the Gela Plain. Only the first 10 top-rankedmodels have been reported. Model notation:
(GRA), constant (.), additive effect (+), recapture effort (Re), N Par = number of model param

Model Survival

1 φJ (ARA + ART = GRA + t + Age), φA. (ARA + ART = GRA)
2 φJ (ARA + ART = GRA + t + Age + Cs), φA. (ARA + ART = GRA)
3 φJ (ARA + ART + GRA + t + Age), φA. (ARA + ART = GRA)
4 φ J (ARA + ART = GRA + t + Age + Cs), φA. (ARA + ART = GRA + Cs)
5 φJ (ARA + ART + GRA + t + Age), φA. (ARA + ART + GRA)
6 φJ (ARA = ART = GRA + t + Age), φA. (ARA + ART = GRA)
7 φJ (ARA = GRA + ART + t + Age), φA. (ARA + ART = GRA)
8 φJ (ARA = ART + GRA + t + Age), φA. (ARA + ART = GRA)
9 φJ (ARA = ART = GRA + t + Age), φA. (ARA + ART + GRA)
10 φJ (ARA = GRA + ART + t + Age), φA. (ARA + ARA = GRA)
to survival analysis, the effect of habitat on the number of fledglingswas
not significant, and the best model with the lowest AICc (Model 1,
Table 2) explained fecundity as a negative function of colony size and
year but not of their interaction (Fig. 2, Table 2). In our study area, a col-
ony size of around 18–20 pairs would produce the optimal trade-off
between fecundity and juvenile survival.

3.3. Population modeling

Following the previous results, we also treated artichoke and grass-
land colonies together when modeling habitat-dependent growth. The
estimated population growth rate (λ) for arable colonies was 0.38 ±
0.01, whereas for artichoke and grassland colonies it was 0.77 ± 0.02
(Fig. 3). Sensitivity and elasticity analyses indicated that the population
growth rate showed the highest sensitivity and elasticity to adult sur-
vival, followed by changes in juvenile survival and then in adult fecun-
dity in both habitat types (Table 3). The stable age distribution was
dominated by the adult class and showed similar values in all colony
habitats (proportion of adults: 0.59 for arable and 0.57 for artichoke
and grassland).

4. Discussion

Mechanistic models linking land-use and demography can be used
to explore population responses to land-use change if robust estimates
of habitat-dependent vital rates are available (Stephens et al., 2003).
This approach has the advantage that assumptions concerning ecologi-
cal mechanisms are amenable to evaluation, and it identifies the most
appropriate land-management strategy for biodiversity conservation
(Mattison and Norris, 2005). Here, long-term colony monitoring and
J, respectively) and adults (ϕA and pA, respectively) lesser kestrels in different colony hab-
colony size (Cs), time (t), age (Age), habitat: arable (ARA), artichoke (ART) and grassland
eters.

Recapture AICc ΔAICc AICc w Deviance N Par

pJ (Re) pA(Re) 1772.6 0 0.35 1732.2 20
pJ (Re) pA(Re) 1773.9 1.36 0.18 1731.5 21
pJ (Re) pA(Re) 1774.4 1.88 0.14 1732.1 21
pJ (Re) pA(Re) 1774.8 2.23 0.11 1730.4 22
pJ (Re) pA(Re) 1775.4 2.88 0.08 1731.0 22
pJ (Re) pA(Re) 1776.8 4.22 0.04 1738.5 19
pJ (Re) pA(Re) 1776.8 4.24 0.04 1736.5 20
pJ (Re) pA(Re) 1777.7 5.11 0.03 1737.3 20
pJ (Re) pA(Re) 1777.8 5.21 0.03 1737.4 20
pJ (Re) pA(Re) 1787.5 14.89 0 1747.1 20



Fig. 2. Relationship between colony size and juvenile survival probability (Model 2,
Table 1, N = 2103, solid line and black dots) and fecundity (Model 1, Table 2, N = 1001,
dotted line andwhite squares). Juvenile survival probability and fecunditywere standard-
izeddividingby range to have both variableswith the sameorder ofmagnitude and to plot
them on colony size.

Fig. 3. Estimated lesser kestrel population growth rate in 2004–2012 (with the exception
of 2008) for artichoke, grassland and arable habitats.
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individual capture–recapture data were used to identify the effect
of land use on fecundity and survival probabilities of lesser kestrels.
In our study area, both survival and recapture probability changed pos-
itively with age (see also Prugnolle et al., 2003). This is probably due to
age-dependent access to reproduction in high quality colonies (Bellia et
al., 2011; Serrano and Tella, 2007), and to the effect of annual rainfall
patterns on age-dependent mortality in overwintering areas (Mihoub
et al., 2010). Not surprisingly, the demography of migratory birdsmost-
ly depends on bothwintering and breeding habitat quality (see below),
which is critical in determining individual fitness (e.g. Gunnarsson et al.,
2005). Population growth of farmland birds is often habitat specific (e.g.
Arlt et al., 2008) and yet, density dependence plays a crucial role in co-
lonial species (Serrano et al., 2005).

4.1. Effect of colony size on lesser kestrel demography

Sociality elicits a complex interplay of costs and benefits (Danchin
and Wagner, 1997; Campobello and Hare, 2007; Di Maggio et al.,
2013), and the unequal fitness payoffs of living in a group drive the var-
iation in avian colony size (Brown et al., 2000). Ourfindings confirm col-
ony size as an important driver of population dynamics of colonial birds
as summarized here for a renowned model species such as the lesser
kestrel.

Lesser kestrels living in larger colonies acquire fitness benefits that
prevail over the costs of both the increased competition for resources
(Bonal andAparicio, 2008) and the increased risk of transmission of par-
asites and diseases associated with group living (Serrano et al., 2004).
Further benefits of living in large colonies include the reduced risk of
Table 2
Results of GLMM testing for the role of colony size, habitat and year on fecundity (N =
1001 nests). In bold themodelwith the lowest AIC value. Colony Idwas fitted as a random
term. Interactive effect marked as * and additive effect as +; N Par = number of model
parameters.

Rank Model AIC ΔAIC AIC w N Par

1 Fecundity ~ year + colony size 3679.5 0 0.619 2
2 Fecundity ~ year + colony size * habitat 3681.0 1.5 0.293 3
3 Fecundity ~ year + colony size + habitat 3683.4 3.9 0.088 3
4 Fecundity ~ habitat + year 3696.9 17.4 0.000 2
5 Fecundity ~ year 3793.4 113.9 0.000 1
6 Fecundity ~ colony size 3848.4 168.9 0.000 1
7 Fecundity ~ habitat + colony size 3851.6 172.1 0.000 2
8 Fecundity ~ habitat 3884.4 204.9 0.000 1
predation for adults and their offspring (Serrano et al., 2005) and the re-
duction of individual investment in vigilance (Campobello et al., 2012).
Moreover, colony size regulates the dispersal of lesser kestrels, which
use the number of conspecifics as a cue to colony quality and tend to
move to large colonies (Serrano et al., 2001; Serrano and Tella, 2003).
Earlier studies found colony size to be positively associated with repro-
ductive success in this species (Serrano and Tella, 2007), and nestling
survivalwas higher in large colonies (Serrano et al., 2001), due to the in-
teraction between nest distance and breeder abundance (Di Maggio
et al., 2013). On the other hand, living in large groups imposes signifi-
cant costs (e.g. Szostek et al., 2014), as lesser kestrels experience
density-dependent food depletion in large colonies (Bonal and
Aparicio, 2008). First-breeding birds are forced to emigrate from natal
sites due to social interactions with adults in colonies at carrying capac-
ity (Serrano and Tella, 2007), and the increase in colony size beyond a
certain threshold exerts a negative effect because of its repercussions
on nest distance (Serrano et al., 2004).

Opposite selection pressures are thus acting on colony size as in
common terns Sterna hirundo, where large colonies promote higher sur-
vival but reduce the quality of chicks (Minias et al., 2015). Similarly, we
detected an opposite colony size effect in juvenile survival and fecundi-
ty. In juveniles, colony size plays a small positive effect on survival;
however, colony size has a negative effect on fecundity, as the number
of fledglings decreased more in large colonies than in small ones. Alter-
natively, juveniles born into large colonies might be more philopatric
than those born into small ones. This hypothesis cannot be ruled out
but in view of the negative effect of colony size on fecundity, it would
Sensitivity and elasticity of different vital rates on population growth rates for lesser
kestrels living in arable, artichoke and grassland habitats of the Gela Plain. Estimates and
definitions of vital rates are given in online Table A3.

Matrix element Definition Sensitivity Elasticity

A) Arable
1-year bird fecundity C0FS0 0.034 b0.001
Adult fecundity CFSad 0.249 0.140
First-year survival probability S0 0.597 0.141
1-year bird survival probability Ssub 0.096 0.140
Adult survival probability Sad 0.717 0.576

B) Artichoke and grassland
1-year bird fecundity C0FS0 0.014 b0.001
Adult fecundity CFSad 0.116 0.074
First-year survival probability S0 0.396 0.075
1-year bird survival probability Ssub 0.103 0.074
Adult survival probability Sad 0.851 0.776
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imply a maladaptive behavior. Our findings more likely indicated a
trade-off between the survival probability of offspring and fecundity,
with a lower number of high-quality juveniles (i.e. with a small survival
advantage in the first year) produced in larger colonies. The combina-
tion of density-dependent fertility with the small effect that density
has on juvenile survival allowed us to quantify the optimal colony
size. This is almost a midpoint value conditional on the range of colony
sizes settled by lesser kestrels in the Gela Plain under the environmental
conditions of 2004–2012. Nevertheless, it establishes a baseline for fur-
ther experimental design on the selection of amedium colony size, such
as the optimal size for group living in farmland birds.

4.2. Effect of land uses on lesser kestrel demography

The elevated biodiversity in Mediterranean agro-ecosystems re-
quires special management practices on a local scale (Sokos et al.,
2013). In our study we found that land use had a very strong effect on
adult survival probability and population growth rate. Adult lesser
kestrels living in colonies surrounded by grassland and artichoke fields
had 50% higher survival probabilities than conspecifics living in arable
colonies. Though grasslands and artichoke fields are quite different
land uses, adult lesser kestrels experienced equivalent survival proba-
bilities in these two habitats. Grasslands, including set-aside and fallow
lands, are extensive landscape elements of traditional farming particu-
larly important for the lesser kestrel (Franco et al., 2004) and wildlife
conservation (Moreira et al., 2005; Zamora et al., 2007). In contrast,
the artichoke field is a distinctive crop type of the study area, and is an
unusual foraging habitat for the lesser kestrel in Southern Europe
(García et al., 2006; Catry et al., 2014). The temporal dynamics of culti-
vation (Catry et al., 2012), makes artichoke fields suitable for lesser kes-
trels. During the winter, when lesser kestrels are absent from the area,
artichoke fields are disturbed by the human activities related to inten-
sive cultivation, such as preparation of the field, artichoke planting,
and heavy use of fertilizers and biocides (Lo Giudice et al., 2014). The
fields are abandoned after the harvest in late April to early May, and
provide an abundance of prey and biomass to lesser kestrels during
the breeding season (Di Maggio et al., unpublished results).

In our study area, cereal fields grant the lowest survival to lesser kes-
trels, confirming the poor quality of this land use due to tall vegetation
cover that provides low accessibility to prey, and to biocide use, me-
chanical plowing, and mowing, which reduce prey biomass (Garcia
et al., 2006; Catry et al., 2012). Only during harvesting, cereals represent
a good foraging habitat for the ephemeral increase in food supply (Catry
et al., 2014). In our study area, arable fields prove to be the land use pro-
viding the lowest invertebrate and vertebrate richness and biomass (Di
Maggio et al., unpublished results).

4.3. Conservation implications and management of farmland habitats

The current values of vital rates found in the Gela Plain predict a
decline of the lesser-kestrel population. As in Hiraldo et al. (1996), our
findings suggest that lesser kestrel demography is driven by the adult
class (but see Prugnolle et al., 2003). Adult survival is the vital rate con-
tributing the most to the sensitivity and elasticity of the population
growth rate, followed by juvenile survival and adult fecundity. Conser-
vation practices working on the basis of explicit factors affecting adult
survival would thus be the most decisive for correct population man-
agement of the lesser kestrel across the Palearctic range (Ehrlén et al.,
2001; Sarà et al., 2014). Adult survival probabilities in grassland and ar-
tichoke colonies (0.66–0.75) are comparable to those of other lesser
kestrel populations (0.67–0.72: Hiraldo et al., 1996; Prugnolle et al.,
2003; Serrano et al., 2005). Contrarily, adult survival in arable colonies
(0.30) of the Gela Plain is the lowest recorded in demographic studies
of the species so far. The asymptotic growth rate indicated a negative
population trend (λ b 1) across the study period for every land-use, al-
though it was much more marked in the arable colonies. Agricultural
intensification in the Gela Plain is reducing the extent of grasslands,
and extending the irrigated crop season with a much more massive
use of biocides. Their use is particularly dangerous in June, when lesser
kestrels are raising their nestlings as indicated by the large number of
poisoned females recorded dead inside failed nests. Accordingly, the
most effective strategy to prevent the collapse of the lesser kestrel pop-
ulation in the Gela Plain should be based on land-use management and
on thedirect causes of adultmortality, to return to the extensive agricul-
tural practices observed at the beginnings of the study. Although
maintaining low-intensity farming is still the main recommendation
for this species (García et al., 2006; Catry et al., 2012), the positive
effects of irrigated non-traditional crops, such as artichoke in the Gela
Plain, or alfalfa Medicago sativa fields in Spain (Ursua et al., 2005), on
lesser kestrel demography bring forward new management options
when socio-economics pressure makes irrigation unavoidable. Conser-
vation actions should be encompassed in anAES implemented to reduce
agricultural intensification and human disturbance and enhance habitat
heterogeneity (Whittingham, 2007). Specifically, the AES should pro-
mote organic farming in the area and artichoke cultivation with low
input of biocides to make more compatible irrigated crops with lesser
kestrel conservation. Uncut strips of cereals and grasslands should be
left as buffers around arable colonies to improve prey availability and
reduce adult and nestling starvation (Catry et al., 2014). Because there
was no interaction between habitat type and colony size, all of these
conservation actions would be equally effective when applied to all col-
onies, irrespective of colony size.

Experimental manipulations of land uses with simultaneous moni-
toring of pseudo-steppe species, such as the lesser kestrel, would pro-
vide fine-tuned indications, not only for wide-scale conservation
strategies on one bio-indicator of a vulnerable habitat but also for man-
agement actions able to improve sustainability in agricultural practices.
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