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A B S T R A C T

Farmland bird species have suffered dramatic declines in recent decades, especially in Mediterranean areas. The
intensification of agricultural practices has led to reduced invertebrate prey, which represent the bulk of the diet
of many farmland birds. In this study, we investigated the spatial and temporal variation in the diet of the lesser
kestrel (Falco naumanni) during the breeding season, monitored over a five-year period between 2006 and 2013
in the Gela Plain (Sicily). Our aim was to understand whether, and to what extent, farming practices affected the
reproductive outputs of this predominantly insectivore bird in order to find a profitable compromise between
conservation of farmland birds and farming practices. During our study, lesser kestrel diet varied among
farmland habitats, in terms of ingested biomass, prey items/pellet and diet breadth. This has reflected in the
reproductive output because colonies characterised by a higher ingested biomass fledged more chicks than the
others. The artichoke and grassland fields were found to provide the most beneficial dietary parameters.
Unexpectedly, the intensive and high-profit artichoke farming might turn out to be suitable for lesser kestrels.
Artichoke fields are chiefly used when abandoned after harvest, providing high prey availability and accessibility
for kestrels during the brood raising stage of their breeding season. A mosaic of grassland and artichoke fields
can thus be recommended for Mediterranean agricultural areas of the Natura2000 network, in which some
intensive farming and lesser kestrels can coexist, if adequately framed in a friendly-to-wildlife agriculture policy.
Such a potential optimal trade-off between avian population persistence and economic sustainability for farmers
we have found, should be planned in alternative management of agro-ecosystems, enhancing the functioning of
trophic chains. For our study area, we suggest at least farmers be: i) informed on the role of predators as
biological agents for pest control; ii) granted to reduce the high level of chemicals currently used during cul-
tivation in favour of organic farming; and iii) granted to maintain the artichoke fields until June, following
completion of the harvest.

1. Introduction

Populations of several farmland bird species, representing a large
proportion of European avifauna, have suffered dramatic declines in
recent decades, especially in western and Mediterranean Europe
(Butler, Boccaccio, Gregory, Vorisek, & Norris, 2010; Chamberlain,
Fuller, Bunce, Duckworth, & Shrubb, 2000; Donald, Green, & Heath,
2001; Sokos, Mamolos, Kalburtji, & Birtsas, 2013). The major cause of
population decline is from the intensification of agricultural practices,
such as heavy mechanisation, increased use of fertilisers and biocides,
coupled with the abandonment of less productive and marginal lands
(Benton, Vickery, & Wilson, 2003; Donald, Pisano, Rayment, & Pain,
2002; Fuller et al., 1995; Newton, 2004). Agricultural intensification
has reduced the availability of refuges and reproduction areas of

invertebrate prey, which represent the bulk of the diet of most farmland
birds (Benton, Bryant, Cole, & Crick, 2002; Boatman et al., 2004;
Genghini, Gellini, & Gustin, 2006; Wilson, Morris, Arroyo, Clark, &
Bradbury, 1999). Recent studies have shown that the use of pesticides,
such as neonicotinoids, can cause both a disruption in the food web and
a population decline in insectivorous birds (Easton & Goulson, 2013;
Gibbons, Morrisey, & Mineau, 2015; Gill, Ramos-Rodríguez, & Raine,
2012; Hallmann, Foppen, van Turnhout, de Kroon, & Jongejans, 2014;
Whitehorn, O’Connor, Wackers, & Goulson, 2012).

The quality of habitats surrounding a nest site may affect the dis-
tribution, reproduction, body mass and diet of many avian species in
the same season (Bretagnolle et al., 2011; Geiger et al., 2014; Orlowski,
Czarnecka, & Golawski, 2014), or even in subsequent years through
carry-over effects (Harrison, Blount, Inger, Norris, & Bearhop, 2011;
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Norris, Marra, Kyser, Sherry, & Ratcliffe, 2004; Rioux Paquette,
Pelletier, Garant, & Bélisle, 2014).

The Common Agricultural Policy (CAP) of the EU has accelerated
the habitat degradation process and biodiversity loss, driven by the
combination of intensification and abandonment (Berg, Wretenberg,
Zmihorski, Hiron, & Pärt, 2015; Pe’er et al., 2014; Robinson &
Sutherland, 2002). To halt biodiversity loss, the EU established the
development of alternative environmentally friendly agricultural areas
with reduced pesticide use (European Commission, 2006; Whittingham,
2007).

A comprehensive understanding of the association between land use
and the diet of animal species living in a fast-changing and anthro-
pogenic environment has been highly recommended, as this will pro-
vide important data to the EU for the support of bird conservation and
management actions not only at the breeding grounds but also at the
pre-migratory areas (Bijlsma, 2013; Kowalczyk, Chiaradia, Preston, &
Reina, 2014; Sarà, Campobello, Zanca, & Massa, 2014). Thus, knowl-
edge of the nutritional profile of food sources and of the temporal and
spatial distribution in the diet of farmland species, have become crucial
information to be recorded (Lihoreau et al., 2015; Raubenheimer,
Simpson, & Mayntz, 2009), in order to understand whether, and to
what extent, the intensification of farming practices has affected both
the reproductive output and survival of insectivorous birds, and whe-
ther there are possible actions which are beneficial for both farmer
profits and conservation of farmland birds.

Birds of prey represent a good indicator of ecosystem functioning
due to their position at the top of food webs (Sergio et al., 2014), and
species living in farmland landscapes promptly respond to agricultural
intensification (see for instance Butet et al., 2010).

The lesser kestrel, a small raptor species, experienced a marked
decline in its western Palaearctic breeding range in the middle of the
20th century (Iñigo & Barov, 2011). The recovery of major Iberian
populations through conservation actions has improved the conserva-
tion status of the species from ‘vulnerable’ to ‘least concern’ (IUCN,
2011). However, beyond the Iberian Peninsula their conservation status
is fluctuating and requires further investigation, especially in southern
and eastern Europe and particularly in Italy (Campobello, Lindstrom, Di
Maggio, & Sarà, 2017; Morganti, Preatoni, & Sarà, 2017). In addition,
the lesser kestrel is considered an ideal biological indicator for studying
the effects of agricultural intensification on insectivorous predators
(Bonal & Aparicio, 2008; Catry, Franco, & Moreira, 2014; Tella &
Forero, 2000), as the effects on this species can be extended to several
other farmland birds(Brickle, Harper, Aebischer & Cockayne, 2000;
Butet et al., 2010; Delgado & Moreira, 2002). Previous studies have
investigated the dietary composition of lesser kestrels under different
conditions of anthropogenic disturbance and climate, however, the
association with modern agricultural landscapes was not explicitly
considered to be a potential determinant of population dynamics in the
Mediterranean area (Choisy, Conteau, Lepley, Manceau, & Yau, 1999;
Pérez-Granados, 2010 but see Lepley, Brun, Foucart, & Pilard, 2000 in
France). Moreover, the feeding ecology of the lesser kestrel is virtually
unknown outside the Iberian Peninsula.

Lowland areas of southern Europe include important Mediterranean
habitats used by lesser kestrels during the breeding season (Di Maggio,
Campobello, & Sarà, 2013). Our previous work (Di Maggio,
Campobello, Tavecchia, & Sarà, 2016) demonstrated that lesser kestrel
colonies located in non-irrigated cereal lands had a lower adult and
juvenile survival probability and population growth rate compared to
colonies located in grasslands and artichoke lands. Therefore, we hy-
pothesised that the specific composition of foraging habitats during the
breeding season may affect the intra-population variability in the diet
of lesser kestrels. Such variability should be crucial for the seasonal
reproductive success and ultimately will drive the demography of this
species.

More specifically, we identified the need for additional investigation
into the relationship between the dietary composition of the lesser

kestrel and level of agricultural intensification, in order to determine
whether it is possible to find appropriate and realistic agricultural
management actions which are able to fulfil both the habitat require-
ments for bird viability and farmer demands. Thus, the main aims of
this study were to: (i) determine the diet of lesser kestrels during five
breeding seasons (sampled across an eight-year period) and compare its
composition in three farmland habitats, two of which characterised by a
higher intensity of agricultural activity; (ii) understand the effect of diet
on the breeding success of lesser kestrels; and iii) provide new evidence,
if any, for sustainable agro-ecosystems for both farmers and biodi-
versity.

2. Methods

2.1. Study species

The lesser kestrel is a small raptor that lives in pseudo-steppes of the
western Palearctic (Iñigo & Barov, 2011) and spends the winter in West
Africa (Limiñana, Romero, Mellone, & Urios, 2012). It is a facultative
colonial species that usually breeds in association with jackdaws
(Corvus monedula) and rock doves (Columba livia) (Campobello, Hare, &
Sarà, 2015; Campobello, Sarà, & Hare, 2012). Several investigations
showed lesser kestrel as a mainly insectivorous species, feeding mainly
on beetles and grasshoppers with a marked change during the breeding
season in terms of prey composition and prey richness (e.g. Rodríguez,
Tapia, Kieny, & Bustamante, 2010). Recently, Catry, Catry, Alho,
Franco, and Moreira, (2016) found a sex-specific differences in the diet
of lesser kestrels limited to the courtship period. The lesser kestrel
population in the Gela plain is the largest in Sicily and one of the most
important in Italy with colony sizes ranging from 1 to 45 pairs (Di
Maggio et al., 2014, 2016; Mascara & Sarà, 2006; Sarà, Campobello, &
Zanca, 2012).

2.2. Study area and habitat types

The Gela plain (474 km2) in southern Sicily (Italy, 37° 07′ N, 14° 19′
E), is a Mediterranean pseudo-steppe formed by a mosaic of arable
habitats, dominated by artichoke (Cynara spp.), wheat and leguminous
cultivations (Triolo, Campobello, & Sarà, 2011). Agricultural in-
tensification is increasingly changing the arable land use, from dry
cereal and artichoke fields to irrigated crops (including new varieties of
artichokes and vegetable growing) in the flat core area of the plain. In
fact, several of our study colonies turned from being surrounded by
non-irrigated crops to a more intensive land use (with pipelines and
drip irrigation growing artichokes and vegetables, these latter replacing
artichoke soon after the harvest) within our observation period (M.
Sarà, personal observation). The rest of the area contains pastures and
xeric vegetation, predominantly graminaceous plants and Mediterra-
nean shrubs (Sarà et al., 2012). We identified the habitats, being the
predominant crop types within a 3 km radius of each colony, because
during the nestling period most foraging trips take place in this radius
around colonies (Franco, Catry, Sutherland, & Palmeirim, 2004; Tella,
Forero, Hiraldo, & Donázar, 1998; but see Hernández-Pliego,
Rodríguez, & Bustamante, 2017). The annual land use of plots sur-
rounding the colonies were obtained from digital maps at the scale of
1:10,000 of AGEA (www.sitr.regione.sicilia.it), historical photographs
from Google maps and field validation records. Principal component
analysis (PCA) was used to summarise the essential habitat character-
istics of the agro-ecosystems (see Fig. A in supplementary materials).
The optimum number of principal components were selected using a
scree plot, which revealed two significant eigenvalues accounting for
96.89% of total variance, and three land-use variables which had the
highest contribution to colony classification (see details in Di Maggio
et al., 2016 and Fig. A in supplementary materials). The land uses were
grouped into the following agro-ecosystems: dry grasslands and other
semi-natural vegetation (hereafter, grassland, GRA) characterised by
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low-intensity agricultural activities (like workers and machinery pre-
sence, etc.: see Sarà et al., 2012 for categorisation of impact); non-ir-
rigated cereal crops on arable land with medium-intensity agricultural
activities (hereafter, arable, ARA) and semi-permanently irrigated
arable land with a high level of agricultural activities (hereafter, arti-
choke, ART; see Fig. A supplementary materials). Each colony, and the
pellets collected from the colonies, were classified into one of these
main categories for the purpose of further analysis (Soliveres et al.,
2011). For each year of the study period (over a five-year period be-
tween 2006 and 2013), we re-classified each colony according to its
prevalent land-use inside the 3-km buffer.

2.3. Pellet collection, prey identification and dietary variables

We collected a total of 927 pellets from 23 colonies (39 ± 0.60
pellets per colony, mean ± SE) over five breeding seasons (2006,
2007, 2010, 2012 and 2013) sampled over an 8-year period in the Gela
plain. Unfortunately, we could not sample all 23 colonies every year; as
a consequence, we inspected a mean of 3.66 ± 0.65 colonies per ha-
bitat/year, collecting an annual mean of 11.9 ± 1.17 nests among the
total sample of colonies. As main land uses changed across the time of
study around some colonies, they were reclassified accordingly.

Each colony was inspected at least three times during the breeding
season, at the time of site occupation and egg-laying (mid-April to early
May), incubation and hatching (mid-May to early June) and fledging
(mid-June to mid-July). This schedule allowed the collection of suffi-
cient data while simultaneously minimising disturbance at the re-
productive sites (Di Maggio et al., 2013). At each visit, the old prey
remains and pellets were removed from the nests. We then collected
fresh pellets in the proximity of, or inside, the nest sites during suc-
cessive visits (Catry et al., 2016; Rodríguez et al., 2010). We did not
collect the pellets from specific nests but we chose randomly from the
active nests available during each visit. After collection in the field,
each pellet was stored in a plastic bag and kept at room temperature
(20 °C) until laboratory analysis.

For each pellet, we assigned large identifiable remains to different
taxa using taxonomic guides, whereas small insect fragments were
identified at the species level by comparison with samples from en-
tomological collections (Rizzo & Massa, 1995), and with collections of
dissected samples of species commonly found in the study area (Massa,
2011). Pellets were dry-dissected in the laboratory under magnification
using a stereomicroscope (M5, Wild, Heerbrugg - Switzerland). Every
mandible was paired with its partner and each head and leg fragment
was isolated, making it was possible to count the total number of spe-
cimens in every pellet. Most prey were identified at the species level,
but in the case of heavily fragmented remains, we applied a con-
servative criterion and assigned the fragments at the family or genus
level. As we were not interested in specific prey-predator relationships,
but rather in inter-habitat prey availability, we then grouped all prey
into 11 large taxonomic categories (hereafter, prey-type) for statistical
analyses. They represented three vertebrates (rodents, reptiles and
birds) and eight insect taxa: Coleoptera Scarabaeidae (beetles), Co-
leoptera Carabidae (ground beetles), other Coleoptera, Orthoptera
Tettigoniidae (bush crickets), Orthoptera Acrididae (grasshoppers),
Orthoptera Grillidae (crickets), other Orthoptera, and other Insecta (i.e.
Hymenoptera, Lepidoptera and Mantodea).

We used three dependent variables: i) ingested biomass per pellet,
ii) number of individual prey items consumed per pellet (hereafter prey
items/pellet), and iii) diet breadth index, in order to describe the lesser
kestrel food niche and investigate whether there was an effect of the
reproductive stage and/or habitat. Ingested biomass was calculated by
adding the weights of each prey item in a single pellet (Sumasgutner,
Nemeth, Tebb, Krenn, & Gamauf, 2014). Prey biomasses were calcu-
lated from body weight data recorded in the study area (Massa, 2011)
and from literature (Rodríguez et al., 2010; Sumasgutner et al., 2014).
The prey items/pellet were calculated from the number of same-side

anatomical remains found for each taxonomic category within a given
pellet, thus, each pellet was treated as an independent unit (Bonal &
Aparicio, 2008; Sumasgutner et al., 2014). The diet breadth index is an
estimate of diet specialisation and is calculated according to Levin’s
Index (Levin, 1968) as B= 1/Σpii2, where pi is the proportion in the
diet represented by the prey-type i for each pellet. We used Levin’s
Index in this study because we were interested in expressing the spe-
cialisation of diet with respect to the most abundant prey items
(Magurran, 2003).

2.4. Breeding parameters

Colony descriptions and study protocols for lesser kestrels in the
study area have previously been described in Sarà et al. (2012), Di
Maggio et al. (2014) and Di Maggio et al. (2016). Shortly, we defined a
breeding colony as a man-made building, often abandoned and ruined
rural houses, where at least one pair of kestrels performed some re-
productive behaviour, such as a male delivering prey to a female, co-
pulation or the inspection of nest chambers, egg laying and brood
raising. For each colony sampled for pellets the occupied nests were
inspected to determine the: i) mean number of eggs, and ii) mean
number of fledglings.

2.5. Statistical analysis

We first used generalised linear mixed models (GLMMs; McCullagh
& Searle, 2000) with normal (for ingested biomass and diet breadth)
and Poisson distributions (for prey items/pellet analysis) to study the
effect of habitat (3 levels: ARA, ART and GRA), reproductive stages
(two levels: egg incubation and chick rearing) and their first-order in-
teractions (habitat*reproductive stages) on: i) prey items/pellet, ii) diet
breadth and on iii) ingested biomass.

The colony identity and the study years (2006, 2007, 2010, 2012
and 2013) were included as random factors. The large sample size and
use of a single analysis (Underwood, 1997), however reduced the risk of
type-2 errors otherwise caused by the multiple testing of first-order
interactions (Zuur, Hilbe, & Ieno, 2013). Tukey’s HSD (Honest Sig-
nificant Difference) post-hoc tests were performed after the GLMM
analyses in order to examine differences in diet breadth, ingested bio-
mass and prey items/pellet for the different reproductive stages and
habitats. The Akaike information criteria (AIC; Burnham & Anderson,
2002) was used to rank the models according to the information-the-
oretic approach (Symonds & Moussalli, 2011). The model with the
lowest AIC value was considered to be the best compromise between
model deviance and model complexity. Models that differed by less
than 2 AIC points from the best one, were considered to provide equal
support to the data (Burnham & Anderson, 2002; Grueber, Laws,
Nakagawa, & Jamieson, 2011), however the AIC weight (AICw) in-
formed about the relative importance of predictors (Symonds &
Moussalli, 2011).

Second, we used a generalised linear model (GLM) to determine the
effect of diet breadth, ingested biomass and prey items/pellet on: i) the
mean number of eggs per colony; and ii) the mean number of fledglings
per colony. In this case, we employed a normal error distribution be-
cause the mean number of eggs per colony (Kolmogorov-Smirnov nor-
mality test, P= 0.105) and mean number of fledglings per colony
(Kolmogorov-Smirnov normality test, P= 0.124) were normally dis-
tributed. Since diet is likely to vary with land use and reproductive
stage, any colony sampled within the year (a different reproductive
stage in the same colony) and across years (same colony with different
land use) was considered independent. The collinearity among model
predictors (diet breadth, ingested biomass and prey items/pellet) cal-
culated with the Variance inflation factors (VIF) was ∼ 1, meaning a
lack of correlation among the predictor variables (Zuur et al., 2013).

All the values were reported as mean ± SE. The analyses were
conducted using R version 3.0.2 (R Development Core Team, 2011)
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with the R package lme4 (Bates, Maechler, & Bolker, 2013) and STA-
TISTICA 10.0 (Statsoft Inc., 2001).

3. Results

We analysed 4517 prey items in 927 pellets collected over five years
(185 ± 52.4 pellets per year). The core of the lesser kestrel diet (80%)
was equally divided between Coleoptera (38.6%) and Orthoptera
(41.7%) in terms of prey items percentage (Table 1). Vertebrates ac-
counted for only 9% of prey items, but represented 72.8% of ingested
biomass, being represented especially by reptiles and rodents (36% and
22.6%, respectively; Table 1). Orthoptera ranked second to vertebrates
in terms of ingested biomass (15.7%), followed by Coleoptera (8%).
Among the Coleoptera, Pentodon bidens (Scarabaeidae) was the most
frequently consumed prey (53%), whereas Grylloderes brunneri (Gril-
lydae) (16%) and Aiolopus strepens (Acrididae) (16%) were the main
prey among the Orthoptera. Large Acrididae were most consumed in
artichoke fields whereas medium/small size Tettigoniidae and Gryl-
lidae were most consumed in grasslands and arable lands, respectively
(Table B).

3.1. Effect of habitat and reproductive stages on diet

During the study years, diet breadth and the prey items/pellet were
best explained by the interaction between the habitat type and the re-
productive stage (Table 2). The larger diet breadth was found in cereal
crops of arable land (ARA, hereafter arable) during the eggs incubation
(2.56 ± 0.08; F1,2 = 3.25, P < 0.001, N= 927; Fig. 1A), followed by
that in grassland during the eggs incubation, although not statistically
significant (2.34 ± 0.10, F1,2 = 3.25, P=0.08, N=927; Fig. 1A).
Artichoke fields, both during eggs incubation and chicks rearing
showed the lowest diet breadth (1.88 ± 0.08, F1,2 = 3.25, P < 0.001,
N=927; Fig. 1A).

Likewise, the highest prey items/pellet were found in grassland
during the chicks rearing (6.16 ± 0.37; F1,2 = 3.60, P < 0.001,
N=927), followed by values found in arable during both eggs in-
cubation and chicks rearing (5.20 ± 0.40, F1,2 = 3.25, P= 0.02,
N=927; Fig. 1B). Artichoke fields, during eggs incubation (but not
during chicks rearing) showed the lowest number of prey items/pellet
(2.91 ± 0.37, F1,2 = 3.59, P < 0.001, N=927; Fig. 1B).

Two models were ranked as giving the best support to the analysis
of ingested biomass across the reproductive season (ΔAIC values< 2.0;

Table 2). The first model in Table 2 revealed a significant effect of the
habitat type, so that the highest ingested biomass was recorded in ar-
tichoke habitat (F1,2= 3.02, P=0.008, N= 927). In more detail, post-
hoc test revealed, over the study period, a significant difference be-
tween grassland and artichoke (Fisher LSD test: F1,2= 3.78, P=0.04,
N= 927) and between artichoke and arable (Fisher LSD test:
F1,2= 3.78, P < 0.001, N=927), whereas no significant difference
was between grassland and arable (Fisher LSD test: F1,2= 3.78,
P= 0.20, N= 927). The mean of ingested biomass across years was

Table 1
Number and frequency of prey items in the ingested biomass (g) found in the
927 lesser kestrel pellets analysed over the study period in the Gela plain
(2006–2013). Totals and subtotals of the main prey categories have been re-
ported in bold.

Taxon N N % Ingested biomass
(g)

Ingested Biomass
%

Rodentia 176 3.90 3,013 22.64
Reptilia 157 3.48 4,781 36.0
Aves 81 1.79 1,885 14.16
Sub-total Vertebrate 414 9.03 9,679 72.80

Scarabaeidae 961 21.28 690 5.18
Carabidae 296 6.55 149 1.12
Other Coleoptera 489 10.83 224 1.68
Sub-total Coleoptera 1,746 38.65 1,063 7.98

Tettigoniidae 663 14.68 1192 8.95
Acrididae 581 12.86 325 2.44
Gryllidae 309 6.84 82 0.62
Other Orthoptera 330 7.31 496 3.73
Sub-total Orthoptera 1,883 41.69 2,095 15.74

Other Insecta 474 10.49 474 3.60

Total 4517 13,311

Table 2
GLMMs testing whether habitat and reproductive stages (RS) are important
predictors of: i) ingested biomass, ii) prey items/pellet and iii) diet breadth
(N=927). Colony identity and study year are included as random factors. The
best models are presented in bold and are compared to the baseline levels of
Arable as Habitat type, and Egg incubation as Reproductive stage.

Rank Model Estimate SE AIC ΔAIC AICw

Ingested biomass
1 Habitat 7852.86 0.00 0.59

Habitat Artichoke 4.37 1.65
Habitat Grassland 1.81 1.86

2 Habitat+Reproductive
Stage

7854.62 1.76 0.25

Habitat Artichoke 4.44 1.66
Habitat Grassland 2.01 1.91
RS: Chicks rearing −0.67 1.36

3 Habitat * Reproductive Stage 7856.11 3.25 0.11
Habitat Artichoke 4.67 2.07
Habitat Grassland 4.33 2.49
RS: Chicks rearing 0.67 2.13
Habitat Artichoke * Chicks
rearing

−0.23 2.79

Habitat Grassland * Chicks
rearing

−4.23 2.99

4 Reproductive Stage 7857.7 4.85 0.05
RS: Chicks rearing −0.39 1.32

Prey items/pellet
1 Habitat * Reproductive

Stage
5166.50 0.00 0.78

Habitat Artichoke 0.58 0.52
Habitat Grassland 2.16 0.68
RS: Chicks rearing 1.12 0.52
Habitat Artichoke * Chicks
rearing

0.53 0.66

Habitat Grassland * Chicks
rearing

−1.40 0.73

2 Habitat+Reproductive Stage 5170.5 4.00 0.11
Habitat Artichoke 0.75 0.43
Habitat Grassland 1.40 0.56
RS: Chicks rearing 0.90 0.32

3 Reproductive Stage 5170.53 4.01 0.10
RS: Chicks rearing 1.03 0.32

4 Habitat 5176.23 9.71 0.00
Habitat Artichoke 0.84 0.43
Habitat Grassland 1.66 0.55

Diet Breadth
1 Habitat * Reproductive

Stage
2589.00 0.00 0.93

Habitat Artichoke −0.13 0.14
Habitat Grassland 0.33 0.20
RS: Chicks rearing 0.11 0.13
Habitat Artichoke * Chicks
rearing

0.04 0.17

Habitat Grassland * Chicks
rearing

−0.54 0.19

2 Reproductive Stage 2595.40 6.40 0.04
RS: Chicks rearing −0.04 0.08

3 Habitat 2596.00 7.01 0.03
Habitat Artichoke −0.14 0.12
Habitat Grassland 0.03 0.18

4 Habitat+Reproductive Stage 2597.72 8.72 0.01
Habitat Artichoke −0.14 0.12
Habitat Grassland 0.05 0.18
RS: Chicks rearing −0.04 0.08
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similar in both artichoke land (20.64 ± 1.27 g) and grassland
(18.29 ± 1.06 g), and was significantly lower in arable colonies
(16.13 ± 1.05 g). Nonetheless, the 49% of large Orthoptera Acrididae
and especially the 43% of total vertebrate prey biomasses, were preyed
in artichoke, thus explaining the inverse relationship between the large
ingested biomass and the low number of prey/pellet in such a habitat
(Fig. 2, Table B).

In addition to habitat type, the second model of Table 2 revealed the
global effect of reproductive stage, although the post-hoc test did not
distinguish significantly between eggs incubation and chicks rearing
(Fisher LSD test: F1,2= 0.22, P=0.36, N=927).

3.2. Effects of diet on lesser kestrel breeding success

In total, for the breeding success analysis, we investigated 23 lesser
kestrel colonies, where we collected 78 independent samples of pellets
according to the main land use surrounding the colony and to the re-
productive stage. In more detail, in the 3 different habitats, we got 42
samples during incubation in 19 colonies, and 36 during nestling period
in 21 colonies, with an average of 11.0 ± 0.59 colony/year (range:
7–18) across the study period.

Five out of seven models from GLM analysis on the number of eggs
differed by less than 2 AIC points from the best one, thus providing
equal support to our data (Table 3). However, when we compared our
best model with the null model (i.e. in which all of the terms, but the
intercept, are excluded) we found that the null model better explains
the number of eggs. Regards to the number of fledglings, four out of
seven models differed by less than 2 AIC points from the best one, and
were considered to provide equal support to our data. Specifically, the

Fig. 1. Diet Breadth (A) and prey items/pellet (B) as a function of the inter-
active effect of habitat and reproductive stage (N=927 pellets).

Fig. 2. Total ingested biomass (g ± SE) of the main prey groups as function of
habitat type (N=927 pellets).

Table 3
GLMs testing whether ingested biomass, number of prey items and diet breadth
are important predictors of: i) number of eggs (N=42 samples in 19 colonies),
and ii) number of fledglings (N=36 samples in 21 colonies). The best models
are presented in bold.

Rank Model Estimate SE AIC ΔAIC AICw

Number of Eggs
1 N prey items −0.0007 0.0009 46.12 0.00 0.23
2 Ingested biomass −0.0002 0.0002 46.17 0.05 0.23
3 Diet Breadth −0.0008 0.0020 46.62 0.50 0.09
4 Diet Breadth+N prey

items
47.35 1.23 0.18

Diet Breadth 0.0043 0.0051
N prey items −0.0025 0.0023

5 Diet Breadth+ Ingested
biomass

47.90 1.78 0.13

Diet Breadth 0.0020 0.0039
Ingested biomass −0.0004 0.0005

6 Ingested biomass+N prey
items

48.12 2.00 0.10

N prey items −0.0007 0.0035
Ingested biomass 0.0000 0.0009

7 Ingested biomass+Diet
Breadth+N prey items

49.27 3.15 0.05

Ingested biomass 0.0003 0.0009
Diet Breadth 0.0048 0.0054
N prey items −0.0036 0.0047

Number of Fledglings
1 Ingested biomass 0.0013 0.0005 113.01 0.00 0.36
2 N prey items 0.0036 0.0018 114.74 1.74 0.15
3 Diet Breadth+ Ingested

biomass
114.82 1.81 0.14

Diet Breadth 0.0033 0.0079
Ingested biomass 0.0012 0.0007

4 Ingested biomass+N
prey items

114.96 1.95 0.14

N prey items −0.0008 0.0039
Ingested biomass 0.0016 0.0012

5 Diet Breadth 0.0111 0.0068 116.06 3.05 0.08
6 Ingested biomass+Diet

Breadth+N prey items
116.07 3.06 0.08

Ingested biomass 0.0022 0.0014
Diet Breadth 0.0110 0.0123
N prey items −0.0049 0.0060

7 Diet Breadth+N prey
items

116.72 3.72 0.06

Diet Breadth 0.0015 0.0110
Number of prey items 0.0033 0.0030
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first model showed a noteworthy effect (AICw=0.36) of the ingested
biomass on the number of fledglings (Table 3). Also in this case, we
compared our best model with the null one and we found the latter had
no important effect on the number of fledglings. As predicted by the
first model, colonies with higher ingested biomass fledged more young
kestrels (Fig. 3).

4. Discussion

Reduced availability of food during the breeding season is one of the
main factors driving the decline of farmland birds (Boatman et al.,
2004); however, the association between dietary composition of these
bird species and modern agricultural landscapes is still poorly known
(Clarke, Combridge, & Middleton, 2003; Robinson, 2004). In this study,
we considered the lesser kestrel, an acknowledged representative of
farmland species in Mediterranean agro-ecosystems, and we showed
that its diet, analysed over five years, varied among farmland habitats
and during the reproductive season.

The population decline observed in farmland specialists has been
attributed to policy-driven agricultural changes (Donald et al., 2001;
Donald, Sanderson, Burfield, & Van Bommel, 2006). Since its appear-
ance in 1960s, the CAP has promoted the conversion of natural habitats
and grassland to large-scale cultivated fields, on which pesticides and
mechanised harvesters are used (Donald et al., 2002; Sanderson,
Donald, & Burfield, 2005). This has determined a drastic reduction of
traditional mixed farming based on rotation of crops, and of grassland
habitats which had been the most suitable habitats for pseudo-steppe
birds (Pe’er et al., 2014; Wolff et al., 2005). In order to reverse the
biodiversity loss, the EU endorsed the reformed CAP for 2014–2020
with three principal measures: establish Ecological Focus Areas (EFAs)
in farmed areas, maintain existing grassland, and grow a minimum of
three different crops on any farm with>3 ha of arable land (Pe’er
et al., 2014). Despite the subsidies provided to farmers by the reformed
CAP to maintain their traditional low-income farming systems, the scale
of agricultural conversions is still increasing throughout the EU, and the
decline of farmland biodiversity continues too (EEA, 2015). Economic
costs of the reformed-CAP have increased over time, without any evi-
dent benefit for farmland birds, and as consequence the new EU agri-
cultural policy has been flagged like a 'conservation trap' (Torres-
Orozco, Arroyo, Pomarol, & Santangeli, 2016).Until now, the EU agri-
cultural reform has failed to find a conservation management scenario
applicable at large scale without generating social conflicts, in order to
be beneficial for both farmers and farmland birds (Pe’er et al., 2014;
Torres-Orozco et al., 2016).

In our study area, the habitat type, i.e. the land use surrounding the
colony, has a strong effect on all the diet parameters of the lesser kes-
trel.

Traditional agri-ecosystems are an incontrovertible source of insects
for farmland species (Rodrìguez & Bustamante, 2008, Pokluda, Hauck,
& Cizek, 2011; Littlewood, Stewart, & Woodcock, 2012). Grassland
areas are peculiar components of traditional agricultural landscapes,
which are already known to be particularly important for kestrel spe-
cies (Costantini, Dell’Omo, La Fata, & Casagrande, 2014; Franco et al.,
2004) and pseudo-steppe wildlife in general (Moreira et al., 2005;
Zamora, Verdù, & Galante, 2007). Therefore, grassland areas are cur-
rently managed with measures, generally included in agri-environ-
mental schemes (AESs) to provide more suitable habitats to in-
sectivorous birds (Moreira et al., 2005). Not surprisingly, in grasslands
of our study area, we have observed the more abundant diet (in terms of
number of prey items) and the highest predation both in terms of fre-
quency and biomass on all Orthopteran families, when compared to
cereal in arable lands and artichokes. The number of prey items and the
occurrence of Orthopteran families were also higher during chicks
rearing than during eggs incubation; this could be the reason why we
found an important contribution of the prey items/pellet in determining
the number of fledglings. Contrariwise, arable land was the worse agro-
ecosystem for lesser kestrels (e.g. lower ingested biomass, larger diet
breadth). This is in agreement with results found both by García et al.
(2006) and us (Di Maggio et al., 2016). Nonetheless, this habitat can be
a relatively good foraging ground for lesser kestrels, as prey abundance
peaks during cereal harvesting, giving a large but temporary contribute
to diet (Catry et al., 2014). Yet, arable land suitability for lesser kestrel
may change depending from vegetation height and cover (i.e. varieties
of cereal crops used), and the quantity and longitude of margins (Catry
et al., 2014; Rodríguez & Bustamante, 2008; Rodríguez, Tapia, Ribeiro,
& Bustamante, 2013). Therefore, local conditions, we may have not
considered, likely cause the low suitability of arable lands in our sample
area. For instance, the borders among cereal plots are practically absent
due to the wrong practice of stubble-fires after harvest, that have been
destroying year after year margins and associated prey (Triolo et al.,
2011).

Habitat type has proved to have a strong effect also on diet breadth
during both incubation and rearing stages. In particular, individuals
foraging on artichoke habitats had a higher level of diet specialization,
as the small diet breadth index values show. Whether difference in diet
specialization depend on intrinsic parent traits (e.g. age, experience see
Forero et al., 2002; Ludynia et al., 2013) or on habitat remunerability
(see Rodríguez, Johst, & Bustamante, 2006) is still an open question.
Nonetheless, although benefits derived from specialism depend on
multiple factors, diet specialization can influence many population
parameters such as survival probability and breeding success, because
individuals specializing on few prey will be more efficient than gen-
eralists (MacArthur & Pianka, 1966). This occurs amongst raptor spe-
cies, in which individuals with specialized diets have commonly higher
reproductive outputs than those with general diets (e.g. López-López,
Verdejo, & Barba, 2009; Resano-Mayor et al., 2014).

Artichoke cultivation is a typical crop within the study area that
represents an unusual foraging habitat for lesser kestrels in southern
Europe (Catry et al., 2014; García et al., 2006). Although it is con-
sidered to be an intensive (see Lo Giudice, Mbohwa, Clasadonte, &
Ingrao, 2014) and high-profit crop, the local temporal dynamics of
cultivation could make artichoke fields suitable for lesser kestrels. Ha-
bitually they were sprayed only in winter and abandoned after the
harvest, i.e. from late April – early May, so the human-induced stressors
(chemical inputs, harvest, etc.) finish at the beginning of lesser kestrel
reproduction, and secondary flowering plants and stubbles in harvested
fields attract rich insect and small vertebrate communities, in turn in-
creasing prey availability especially during chicks rearing. As a matter
of fact, artichoke fields provide high prey availability, as witnessed by
the larger number of prey items trapped there than in arable lands or

Fig. 3. Effect of the ingested biomass (g) on the mean number of lesser kestrel
fledglings (r=0.45; P= 0.02; N=36 samples in 21colonies).
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grasslands (Di Maggio et al., unpublished results), which are also easily
accessible to lesser kestrels (Di Maggio et al., 2016). The low number of
prey items per pellets found in artichoke fields should be thus generated
from the choice of predator on the most remunerable prey among the
large availability offered in such a habitat.

The strong habitat effects on species’ diet may explain why both
adult and juvenile lesser kestrels living in colonies surrounded by
grassland and artichoke fields have a higher survival probability than
colonies in arable fields (Di Maggio et al., 2016). In the Gela plain,
other pseudo-steppe birds than lesser kestrels, such as the European
stone curlew (Burhinus oedicnemus), showed a marked preference for
the short vegetation cover (stubbles) of harvested artichoke fields
(Triolo et al., 2011).

Alternative crops have been suggested to be capable for sustaining
high levels of biodiversity (Ursúa, Serrano, & Tella, 2005). In Spain, a
conservation plan aimed at restoring little bustard (Tetrax tetrax) po-
pulations was based on an AES in alfalfa (Medicago sativa) crop areas.
Such a conservation plan well increased population productivity, which
was mainly associated with bustard nesting in AES fields (Bretagnolle
et al., 2011). Alfalfa was also highly selected by lesser kestrels after
harvest, and was considered to be a useful alternative when economic
pressures made irrigation unavoidable in dry-lands (Ursúa et al., 2005).

4.1. Recommendations for the management of farmland habitats

Agricultural management generally aims to produce large quantities
of food in the shortest time with the lowest economic costs. These short-
term goals often clash with conservation and management of biodi-
versity and other long-term ecosystem services (EEA, 2015). Moreover,
a short-term focus on maximising productivity can endanger the agri-
ecosystems, in such a way that they could inevitably collapse (Foley
et al., 2005). A very dangerous aspect of this maximised productivity is
the increase in the level of pesticides (e.g. neonicotinoids) used in
agricultural practices that in turn negatively affect invertebrate com-
munities and consequently result in food deprivation and negative
population trends for 15 insectivorous farmland species (Hallmann
et al., 2014).

In our study area, artichoke fields appeared to play a key role in the
intensive agricultural landscape. After the 2010, instead to be left
abandoned after the harvest as before, and although opposed by the
Management Plan of the Site of Community Importance and Special
Areas of Conservation, ITA050001, which includes the Gela plain
(http://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=
ITA050001#6), we assisted to the increasing replacement of the ma-
jority of artichoke fields soon after their harvest with the implantation
of irrigated summer crops (e.g. tomato, eggplant and melon) heavily
sprayed with pesticides (M. Sarà, personal observation). This could be
detrimental to lesser kestrels, especially when they are raising nestlings,
due to both the reduction of available prey still present in harvested
plots, and the use of pesticides in the new growing fields. This latter was
particularly dangerous, as observed by the large number of poisoned
females found dead inside their nests (Di Maggio et al., 2016). Thus, the
maintenance of harvested artichoke fields is a specific recommendation
for the Gela plain that could be extended, in case of lesser kestrel
presence, to other Mediterranean agricultural areas with this distinctive
cultivation.

We believe that artichoke fields can be transformed in a habitat with
relatively little impact from management operations, and potentially
have a larger associated biodiversity than other annual intensive crops
(Di Maggio et al., unpublished results). A considerable reduction in
chemical use during artichoke cultivation in autumn and winter (Lo
Giudice et al., 2014), and a corresponding increase in organic farming
of vegetable summer crops, plus specific actions aimed to increase the
current suitability of the arable lands (e.g. halting the stubble-fires and
margin restorations) would be absolutely necessary to change the
agricultural management of the Gela plain. These latter actions would

reduce the depletion of arthropods and other small vertebrates, thus
hindering the decline of species’ ingested biomass and other diet
parameters.

Therefore, if properly adjusted to environmentally friendly agri-
culture, a mosaic of land uses centred on artichoke fields could preserve
the functioning of trophic chains in intensive agro-ecosystems. Locally,
AESs and other subsidies, such as the measure 4.1 of the Regional Rural
Development Regulation provided to transform the artichokes in or-
ganic cultivation, could fully achieve this target. This management,
would allow the maintenance of both rich lesser kestrel populations and
high-profitability crops for farmers.

Additionally, the change from chemically-based to organic cultiva-
tion, would provide a further fundamental ecosystem service to
farmers, as predators are one of the biological agents for pest control
(Paz et al., 2013). Thus, large populations of lesser kestrels and of other
species in the guild (e.g. owls, common kestrel, stone curlew, etc.)
foraging in the whole area could provide a natural rodenticide and
insecticide, and this information should be disseminated among farmers
and stakeholders.

Alfalfa in Spain (Ursúa et al., 2005) and artichoke in South Sicily are
among the few demonstrated cases of alternative cultivation that po-
tentially offer a win-win scenario, as they provide an optimal trade-off
between biodiversity and economic sustainability for farmers.

In conclusion, we investigated a typical Mediterranean agro-eco-
system in which agricultural intensification is causing progressive ha-
bitat deterioration with time. The discovery of a profitable crop po-
tentially benefitting our model species suggested new strategies for
effective application of alternative agri-environmental practices that
could halt the decrease in farmland biodiversity. Our observations in
the Gela agricultural plain promoted the first steps of a process directed
to create a multifunctional agricultural landscape locally capable of
supporting trade-offs between financial returns from crops, landscape
quality, and nature conservation.
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